What is the purpose of the oil seal?

21 Oct.,2024

 

Oil Seals (Part 1): The structure, functions, and types of oil ...

Oil seals are widely used as sealing devices for machines.

JTEKT's oil seals are described in our catalog, Oil Seals & O-Rings.
However, the catalog uses a large number of technical terms and is very long, so many people seem to have trouble handling it.

Therefore, this series of columns will summarize the following in order:
&#; The structure, functions, and types of oil seals
&#; How to select the right oil seal
&#; Handling of seals, and causes and countermeasures for oil seal failure

You can find more information on our web, so please take a look.


1. What are oil seals?

A wide range of sealing devices are used in various machines.
Sealing devices serve the following functions:

  • Prevent leakage of sealed lubricant from inside
  • Prevent entry of dust and foreign matter (dirt, water, metal powder, etc.) from outside

As shown in Figure 1, sealing devices come in two types: contact and non-contact.
Oil seals are among the major contact type sealing devices.

Figure 1: Types of sealing devices


Please see the following for the types of sealing devices for bearings.
How to Select the Right Bearing (Part 7): Components surrounding the bearing

2. Oil seal structure and functions

Oil seals come in various shapes to fit the machines and substances to be sealed.
Figure 2 shows the structure and the names of the various components of the most typical oil seal.
The functions of the various components are also indicated in Table 1.


Figure 2: Typically shaped oil seal and component nomenclature

* "KOYO" is a registered trademark of JTEKT.



Table 1: The functions of the various components

No.

Name

Functions

&#;

Main lip The main lip is the most critical component of the seal.

Its sealing edge comes in full contact with the shaft surface in order to provide excellent sealing performance.
(See Figure 3.)

&#;

Minor lip The minor lip prevents the entry of dust and contaminants from outside.
Lubricant can be retained in the space between the main lip and the minor lip.

&#;

Sealing edge This refers to the component of the oil seal that makes contact with the shaft.
It is wedge-shaped to be pressed against the shaft surface and makes contact with the shaft to ensure sufficient sealing performance and suitability for operation at high peripheral speed.

&#;

Spring The spring supplements the tightening force (i.e., the lip radial load) to ensure enhanced sealing performance and tight contact between the shaft and the sealing edge.The spring also prevents the deterioration of main lip sealing performance caused by high heat or other such factors.

&#;

Metal case The metal case provides rigidity to the seal, helping it settle on the housing securely. It also ensures easy seal handling and mounting.

&#;

O.D. (outside diameter) surface The O.D. surface affixes the oil seal to the housing and prevents leakage , through the fitting area, of substances to be sealed, while excluding contaminants.

&#;

Fluid side face The front-end face of the seal is called the nose. The nose is made of rubber and forms a gasket seal when compressed on the housing shoulder.

&#;

Air side face The oil seal surface vertical to the center line of the shaft on the side that does not come in contact with substances to be sealed is called the back face.



Figure 3: Sealing function of main lip radial load
* "KOYO" is a registered trademark of JTEKT.



Figure 4 shows the features of a JTEKT oil seal.


Figure 4: JTEKT oil seal features


For more detailed information, please see the following:

Names and functions of seal components&#;

3. Seal types and numbering system

1) Common seal types and their features

Seals are classified by O.D. wall material, lip type, and whether they have a spring or not.
Major oil seals are specified in ISO -1 and JIS B -1.
Table 2 shows the common types of oil seals, while Table 3 shows the features of each type of oil seal.
Table 4 lists the JTEKT oil seal type codes and corresponding ISO and JIS standards.

Table 2 a): Common types of oil seals (with spring)

With spring Rubber O.D. wall Metal O.D. wall

Metal O.D. wall
(with a reinforcing inner metal case)

Without minor lip


Type code

With minor lip


Type code



Table 2 b): Common types of oil seals (without spring)

Without spring Rubber O.D. wall Metal O.D. wall

Without minor lip

Type code

With minor lip


Type code



Table 3: Features of each seal type

No.

Type

Features

1

With spring type Secures stable sealing performance.

2

Rubber O.D. wall type Provides stable sealing performance around the seal O.D. surface.

3

CDI supply professional and honest service.

Metal O.D. wall type Ensures improved fitting retention between the seal O.D. and the housing bore.

4

Metal O.D. wall type (with a reinforcing inner metal case) Protects the main lip.

5

With minor lip type Used for applications where there are contaminants, such as dust and foreign matter, on the air side face of the oil seal.


Table 4: JTEKT oil seal type codes and corresponding ISO and JIS standards

JTEKT

ISO -1 1)

JIS B -1 2) MHS Type 1 HMS Type 2 HMSH Type 3 MH &#; HM &#; MHSA Type 4 HMSA Type 5 HMSAH Type 6 MHA &#; HMA &#;

Notes
1) ISO: International Organization for Standardization
2) 2) JIS: Japanese Industrial Standard


2) Special seal types and their features

JTEKT provides special seals for use in a wide variety of machines and applications.
Table 5 lists the major special seals, their shapes, and their features.


Table 5: The major special seals, their shapes, and their features

Name Type
(type code) Shape Features

Helix Seal

The hydrodynamic ribsa) provided in one direction on the air side face of the lip ensure higher sealing performance. Perfect Seal The hydrodynamic ribsa) provided in two directions on the air side face of the lip ensure higher sealing performance (higher sealing performance in both rotational directions of the shaft).

Super Helix Seal

The hydrodynamic ribsa) have a two-stepped rib configuration provided in one direction on the air face of the lip. Even if the first rib is worn out, the second rib comes into contact with the shaft surface, meaning that this type of oil seal ensures higher sealing performance. Seal with Side Lip A large side lip ensures prevention of entry of dust/water.

&#;&#;&#;&#;&#;&#;&#;&#;&#;&#;&#;&#;a)

Function of hydrodynamic ribs

For more detailed information, please see the following:

Special seal types and their features

3) Seal numbering system

Figure 5 explains the JTEKT seal numbering system.
Seal numbers consist of
&#;(1) the seal type code,
&#;(2) the spring code,
&#;(3) the lip type code,
&#;(4) the dimensional numbers, and
&#;(5) the special type code,
and Table 6 shows examples of each of these codes/numbers.

Figure 5: JTEKT seal numbering system



Table 6: Codes and numbers used in seal numbers

No. Code and number Example &#; Seal type code (*)

MH: O.D. wall is a rubber material
HM: O.D. wall is a metal case
MH(S)H: O.D. wall is metal with a reinforced inner metal case

&#; Spring code

No code: without minor lip

A: with minor lip

&#; Lip type code

No code: without minor lip

A: with minor lip

&#; Dimensional numbers Shaft number 45: The seal suits the shaft diameter of ϕ45 mm. Housing bore number 70: The seal suits the housing bore diameter of ϕ70 mm. Width number 8: The seal width is 8 mm. &#; Special shape code

J: Additional code is added here as an identifier when two or more seals have exactly the same type codes and dimensional numbers.

Note: For seal type codes, see Table 2.


4. Example of the applications of seals

Oil seals are used in a great many machines.

1) Oil seals for cars

Oil seals are used in many areas around the car.
Figure 6 shows the places where each seal type is used.

Figure 6: Oil seals for cars

For more detailed information, please see the following:

Oil seals for cars

2) Oil seals for steel production equipment

Oil seals are used in a great many devices for steel production equipment.
Figure 7 shows the places where each seal type is used in a rolling mill.

Figure 7: Oil seals for steel production equipment (rolling mill)


For more detailed information, please see the following:

Oil seals for steel production equipment

5. Conclusion

Oil seals are one of the major contact type sealing devices.
&#; They prevent leakage of the lubricant or other sealed substance, and
&#; prevent entry of dust and foreign matter (dirt, water, metal powder, etc.) from outside.

Oil seals come in various shapes to fit the machine or substance for sealing.
For this reason, when designing a machine, it is important to select the oil seal that is right for that machine.
Next time, we will explain the key points to consider when selecting your oil seal.

If you have any technical questions regarding oil seals, or opinions/thoughts on these "Bearing Trivia" pages, please feel free to contact us using the following form:

Oil Seals: Function & Maintenance

Summary

  • Oil seals comprise three core components &#; the sealing element (or lip), the metal case, and the optional garter spring, each contributing to the seal&#;s functionality and effectiveness.
  • Choosing an oil seal involves evaluating multiple factors, including design, application needs, shaft diameter, bore diameter, sealing material, and environmental considerations.
  • Regular maintenance, including proper lubrication, routine inspections, and scheduled replacements, ensures the longevity and reliability of oil seals, enhancing overall machine efficiency.

Introduction

In the mechanical world, where machinery and equipment make the earth move and gears rotate, the oil seal is an important component. Oil seals, or shaft seals, are a crucial part of various industrial equipment and applications, ensuring that lubricants don&#;t escape and contaminants don&#;t enter. While they may seem simple, their construction, design, and application are anything but. This in-depth guide aims to help you understand the essential role of oil seals, their construction, the various designs available, and key factors to consider when selecting one for your application.

Purpose of an Oil Seal

An oil seal serves three crucial purposes within any machinery. First, it prevents the leakage of lubricants or fluids outside the seal, even under high pressure. This function ensures the effective operation of equipment, as sufficient lubrication is a key requirement for the smooth functioning of machinery. Second, it retains the lubricating oil within the machinery. This retention function reduces the need for constant maintenance or re-lubrication, saving time and resources. Third, the oil seal acts as a barrier against contaminants. It prevents dirt, dust, and other potential contaminants from entering the machinery, protecting sensitive parts from damage or wear.

Construction of an Oil Seal

The construction of an oil seal is a testament to meticulous engineering. Each oil seal primarily comprises two core components: the sealing element and the metal case. The collaboration of these parts brings about the seal&#;s functionality and effectiveness. A garter spring may also be included as an available feature, providing an extra layer of operational support.

Sealing Element

The sealing element, also known as the sealing lip, forms the interior of the oil seal. Various materials can make up the lip depending on the application&#;s specific needs. Below are some commonly used materials:

  • Nitrile Rubber (NBR): This is the most frequently used material for sealing elements, boasting good heat resistance properties and resistance to salt solutions, oils, hydraulic oils, and gasoline. Its recommended operating temperature range is from -40 to 248°F (-40 to 120°C). Nitrile functions adequately in a dry environment but only for intermittent periods.
  • Polyacrylate Rubber (PA): PA is a go-to material for high surface speed environments as it has better heat resistance than nitrile. It performs optimally within a temperature range of -4 to 302°F (-20 to 150°C). It is incompatible with water or temperatures below -4°F (20°C).
  • Silicone Rubber (SI): A popular choice for its resistance to low and high temperatures (-58 to 356°F, or -50 to 180°C). Silicone rubber has high lubricant absorbency, which reduces friction and wear, making it ideal for crankshaft seals. However, it is unsuitable for oxidized or hypnoid oils due to its poor resistance to hydrolysis.
  • Fluorocarbon Rubber (FKM): Also known as Viton®, this material offers excellent resistance to chemicals and performance at high temperatures. It&#;s highly esteemed for its exceptional durability and heat resistance.

Metal Case

The metal case serves as the oil seal&#;s exterior or frame, providing rigidity and strength to the seal. The case material selection depends on the environment in which the seal will operate. Often, the same rubber material used in the seal element covers the case to help seal the exterior of the oil seal in the housing bore.

  • Carbon Steel:  The most common material for oil seal cases, suitable for use with standard lubricants.
  • Stainless Steel: Ideal for water, chemicals, or corrosion resistance applications. Stainless steel cases are also suitable for many FDA applications.

Oil seals with outer metal cases may include finishes or treatments applied to the outer edge to aid in rust protection, identification, and sealing of scratches or imperfections in the housing bore. Common finishes applied to the outside edge of metal O.D. oil seals include plain (a bonding agent of usually a yellowish-green color), a color-painted edge, and a grinded-polished edge.

Garter Spring

When included, the garter spring applies pressure to the sealing lip against the shaft, ensuring a tight seal. The choice of material, like that of the case, largely depends on the environment of use.

Garter springs are generally used when the lubricant is oil, as it provides the necessary downward force to maintain a tight seal. However, when grease is the lubricant, garter springs can often be eliminated. Due to its low viscosity, grease doesn&#;t require as much downward force to maintain an effective seal.

Standard Sealing Lip Designs

Oil seals come with various lip designs, each serving a unique purpose and suitable for different applications. Let&#;s discuss the most common industry-standard lip designs:

  • Single Lip: This design features a garter spring and primarily seals against internal media in low-pressure applications. It&#;s not ideal for environments with dirt or contaminants.
  • Double Lip: Like the single lip design, this design uses a garter spring with a primary lip that seals against internal media in low-pressure applications. The secondary (or auxiliary) lip offers extra protection from dust and dirt.
  • Dual or Twin Lip: This design features two identical primary lips and a garter spring, typically used to separate two liquids. Lubricating the space between the lips with a grease or similar substance is essential for this lip design.
  • Single Lip, No Spring: This lip design, which does not include a spring, is mainly used for sealing a non-pressure medium, such as grease, or protecting against dirt.
  • Double Lip, No Spring: This design is also springless and is generally used to seal non-pressure media like grease. It protects against both internal and external media.

Standard Sealing Case Designs

Beyond the variety of lip designs, oil seals also come in various case designs, each serving a unique role. Here are some of the most common ones:

  • Type A: An outer metal case with a reinforced plate for structural rigidity. It&#;s ideal for shafts when the diameters exceed 150mm, smaller shafts that need extra strength, or when used with special rubber compounds.
  • Type B: An outer metal case generally used on shafts with diameters under 150mm and bore housing materials made of steel or cast iron. It provides a firm and accurate seal in the housing but may limit the static sealing on the outer diameter (O.D.).
  • Type C: A rubber-covered metal case that can be useful on any size shaft. The rubber prevents rust & corrosion and shields against damage during assembly. This design is suitable for soft alloy, plastic housing materials, or replacement in environments with minor damage to the housing surface.

Factors in Oil Seal Selection

Selecting the right oil seal involves comprehensively evaluating your application&#;s needs and conditions. Below are the key factors to consider when choosing an oil seal:

  1. Type: The combination of lip design and case type you select will determine the overall design of the oil seal.
  2. Shaft Diameter: The outside diameter of the shaft where the seal will operate (sometimes referred to as the I.D. of the oil seal)
  3. Bore Diameter: The inside diameter of the bore housing where the seal will operate (sometimes referred to as the O.D. of the oil seal)
  4. Width: The thickness or width of the oil seal is another critical dimension that impacts the fit and functionality of the oil seal.
  5. Sealing Material: The material used in the seal lip should be resistant to the operating temperature range, chemicals, lubricants, and pressures in your application.
  6. Environmental Factors: Consider external factors such as exposure to dirt, water, and other contaminants, temperature fluctuations, chemical exposure, and shaft speed. For example, oil seals that must withstand high-speed rotational motion, high-pressure conditions, or extreme temperatures require more durable and resilient materials.
  7. Lubrication: The lubrication used in the application will affect the choice of sealing material. The material must be compatible with the lubricant to prevent degradation and ensure the seal&#;s longevity.
  8. Spring Material: The choice of garter spring material is also crucial as it must resist environmental factors such as exposure to water, chemicals, etc.
  9. Application Requirements: The specific requirements of your application are critical to making the right choice. For example, if the seal is for a food processing machine, it must meet FDA standards.

Failure Modes of Oil Seals

It is crucial to understand that oil seals, like any other mechanical component, are subject to failure over time. The key to minimizing downtime and enhancing operational efficiency is recognizing the signs of oil seal failure and understanding its reasons. Here are some common failure modes:

  • Excessive Wear: This is often a sign of regular friction between the seal lip and the shaft, usually resulting from inadequate lubrication or a rough shaft surface finish.
  • Hardening or Cracking: Exposing oil seals to high temperatures for extended periods may cause the sealing material to harden or crack. This breakdown compromises the seal&#;s effectiveness and can lead to leakage.
  • Chemical Erosion: If the seal material is incompatible with the chemicals or lubricants used in the machinery, it can degrade over time, leading to seal failure.
  • Improper Installation: Incorrect oil seal fitting can cause immediate or premature failure. This improper fit can be due to many reasons, such as damage during installation, misalignment, or using the incorrect size.
  • Excessive Pressure: Exposing an oil seal to pressure beyond its design parameters can result in seal deformation.

Maintenance and Inspection of Oil Seals

Proper maintenance and regular inspection are vital for prolonging the service life of oil seals and preventing unplanned downtime. Here are some tips:

  • Regular Lubrication: Ensuring adequate lubrication will minimize friction and prevent wear and tear on the seal. Use only compatible lubricants as per the seal material to avoid chemical erosion.
  • Routine Inspections: Schedule regular inspections of the oil seals to spot any signs of failure, such as leakage, hardening, or visible wear. Catching issues early can prevent minor problems from escalating into significant failures.
  • Proper Cleaning: Dirt, grime, and debris can damage the sealing surface, leading to leaks. Regular cleaning of the seal and surrounding areas can help prevent this.
  • Monitor Operating Conditions: Keep track of pressure levels, temperatures, and shaft speed. Excessive fluctuations can signal something wrong and potentially harm the oil seal.
  • Replacement: Even with impeccable maintenance, oil seals won&#;t last forever. Understanding the typical lifespan of the oil seal type and material used in your machinery will help you plan for timely replacements.

Conclusion

Oil seals are integral components in a range of machinery and equipment, playing a vital role in keeping lubricants in, contaminants out, and machinery operating efficiently. Understanding the design, materials, and selection factors of oil seals can help you make an informed choice regarding your industrial needs. The reliability, longevity, and efficiency the right oil seal can bring to your machinery is priceless.

Global O-Ring and Seal offers over 50,000 unique oil seals with 215,000 cross-referenced part numbers for OEMs and Manufacturers. To find a part you need, search for the OEM/Manufacturer part number alone, and the oil seal matching the part number will be displayed. If you don&#;t have a part number, visit our online store and use the filter options to find the oil seal you are interested in. If you are unsure which oil seal is right for your application, please contact us and speak with a sales representative to discuss your best options.

If you want to learn more, please visit our website Oil Seal Wholesale.